Bioestadística
 

.


 
 
Distribuciones discretas: Bernouilli, binomial, Poisson y multivariante.
 
Las distribuciones discretas son aquellas en las que la variable puede pude tomar un número determinado de valores:
Ejemplo: si se lanza una moneda al aire puede salir cara o cruz; si se tira un dado puede salir un número de 1 al 6; en una ruleta el número puede tomar un valor del 1 al 32.
Las distribuciones continuas son aquellas que presentan un número infinito de posibles soluciones:
Ejemplo: El peso medio de los alumnos de una clase puede tomar infinitos valores dentro de cierto intervalo (42,37 kg, 42,3764 kg, 42, 376541kg, etc); la esperanza media de vida de una población (72,5 años, 7,513 años, 72, 51234 años).

  En este apartado nos centraremos exclusivamente en estudiar las principales distribuciones discretas, que además se basan cada una de ellas en la anterior.

 

Distribuciones discretas: Bernouilli.

La distribución de Bernuilli es el modelo que sigue un experimento que se realiza una sola vez y que puede tener dos soluciones: acierto o fracaso:

Cuando es acierto la variable toma el valor 1

Cuando es fracaso la variable toma el valor 0

Ejemplo: Probabilidad de salir cara al lanzar una moneda al aire (sale cara o no sale); p robabilidad de ser admitido en una universidad (o te admiten o no te admiten); p robabilidad de acertar una quiniela (o aciertas o no aciertas)

Al haber únicamente dos soluciones se trata de sucesos complementarios:
A la probabilidad de éxito se le denomina "p"

A la probabilidad de fracaso se le denomina "q"

Verificándose que:

p + q = 1

Veamos los ejemplos antes mencionados :

Ejemplo 1: Probabilidad de salir cara al lanzar una moneda al aire:
Probabilidad de que salga cara: p = 0,5

Probabilidad de que no salga cara: q = 0,5

p + q = 0,5 + 0,5 = 1

Ejemplo 2: Probabilidad de ser admitido en la universidad:
Probabilidad de ser admitido: p = 0,25

Probabilidad de no ser admitido: q = 0,75

p + q = 0,25 + 0,75 = 1

Ejemplo 3: Probabilidad de acertar una quiniela:
Probabilidad de acertar: p = 0,00001

Probabilidad de no acertar: q = 0,99999

p + q = 0,00001 + 0,99999 = 1
 

Distribuciones discretas: Binomial.

Las distribución binomial parte de la distribución de Bernouilli:

La distribución de Bernouilli se aplica cuando se realiza una sola vez un experimento que tiene únicamente dos posibles resultados (éxito o fracaso), por lo que la variable sólo puede tomar dos valores: el 1 y el 0

La distribución binomial se aplica cuando se realizan un número"n" de veces el experimento de Bernouilli, siendo cada ensayo independiente del anterior. La variable puede tomar valores entre:

0: si todos los experimentos han sido fracaso

n: si todos los experimentos han sido éxitos

Ejemplo: se tira una moneda 10 veces: ¿cuantas caras salen? Si no ha salido ninguna la variable toma el valor 0; si han salido dos caras la variable toma el valor 2; si todas han sido cara la variable toma el valor 10
La distribución de probabilidad de este tipo de distribución sigue el siguiente modelo:

Ejemplo 1: ¿Cuál es la probabilidad de obtener 6 caras al lanzar una moneda 10 veces?

" k " es el número de aciertos. En este ejemplo " k " igual a 6 (en cada acierto decíamos que la variable toma el valor 1: como son 6 aciertos, entonces k = 6)

" n" es el número de ensayos. En nuestro ejemplo son 10

" p " es la probabilidad de éxito, es decir, que salga "cara" al lanzar la moneda. Por lo tanto p = 0,5

La fórmula quedaría:

Luego,

P (x = 6) = 0,205
Es decir, se tiene una probabilidad del 20,5% de obtener 6 caras al lanzar 10 veces una moneda.

Ejemplo 2:¿Cuál es la probabilidad de obtener cuatro veces el número 3 al lanzar un dado 8 veces?

" k " (número de aciertos) toma el valor 4

" n" toma el valor 8

" p " (probabilidad de que salga un 3 al tirar el dado) es 1 / 6 (= 0,1666)

La fórmula queda:
Luego,
P (x = 4) = 0,026
Es decir, se tiene una probabilidad del 2,6% de obtener cuatro veces el número 3 al tirar un dado 8 veces.

Distribuciones discretas: Poisson.

Las distribución de Poisson parte de la distribución binomial:

Cuando en una distribución binomial se realiza el experimento un número "n" muy elevado de veces y la probabilidad de éxito "p" en cada ensayo es reducida, entonces se aplica el modelo de distribución de Poisson:

Se tiene que cumplir que:

" p " < 0,10

" p * n " < 10

La distribución de Poisson sigue el siguiente modelo:

Vamos a explicarla:

El número "e" es 2,71828

" l " = n * p (es decir, el número de veces " n " que se realiza el experimento multiplicado por la probabilidad " p " de éxito en cada ensayo)

" k " es el número de éxito cuya probabilidad se está calculando

Veamos un ejemplo:
La probabilidad de tener un accidente de tráfico es de 0,02 cada vez que se viaja, si se realizan 300 viajes, ¿cual es la probabilidad de tener 3 accidentes?

Como la probabilidad " p " es menor que 0,1, y el producto " n * p " es menor que 10, entonces aplicamos el modelo de distribución de Poisson.

Luego,

P (x = 3) = 0,0892

Por lo tanto, la probabilidad de tener 3 accidentes de tráfico en 300 viajes es del 8,9%

Otro ejemplo:
La probabilidad de que un niño nazca pelirrojo es de 0,012. ¿Cuál es la probabilidad de que entre 800 recien nacidos haya 5 pelirrojos?

Luego,

P (x = 5) = 4,602

Por lo tanto, la probabilidad de que haya 5 pelirrojos entre 800 recien nacidos es del 4,6%..


Temario.

Buscadores.
 
    Enlace hacia algunos de los "Robots genéricos de búsqueda" mas usados en Internet, desde los que podrá realizar búsquedas selectivas de temas relacionados con la "estadística" en general y la "Bioestadística" en particular:


Ultima modificación: 15-V-2003.